

Exercice 1 (2 points)

Pour chacune des questions suivantes une seule réponse proposée est exacte. Laquelle ?

On note x' et x'' les racines de l'équation (E): $x^2 - x - 12 = 0$. Alors :

1)
$$x'^2 + x''^2 = \begin{cases} 1 & \square \\ 25 & \square \\ 23 & \square \end{cases}$$

2)
$$-\frac{12}{x'} - \frac{12}{x''} = \begin{cases} -1 & \Box \\ \frac{1}{12} & \Box \\ 1 & \Box \end{cases}$$

Exercice 2 (4 points)

1) Soit
$$M = \sqrt{3 + 2\sqrt{2}} - \sqrt{3 - \sqrt{8}}$$

Montrer que M est un entier naturel.

2) Soit
$$\varphi = \frac{\sqrt{5}-1}{2}$$

a- Vérifier que
$$\varphi^2 + \varphi = 1$$

b- En déduire que
$$\varphi$$
 et $\varphi+1$ sont inverses.

c- Montrer alors que
$$\frac{\sqrt{\varphi}}{\sqrt{\varphi+1}} + \frac{\sqrt{\varphi+1}}{\sqrt{\varphi}} = \sqrt{5}$$

Exercice 3 (7 points)

- 1) Résoudre dans $\mathbb R$ les équations suivantes :
 - **a)** $\frac{x-1}{x+3} = \frac{x-2}{x+1}$
 - **b)** $\sqrt{4-x} = x-2$
 - **c)** |x-2|=2x-1
- 2) a- Résoudre dans \mathbb{R} , l'équation : $x^2 5x + 4 = 0$.
 - **b-** En déduire la résolution de l'équation : $x 5\sqrt{x} + 4 = 0$
- 3) a- Résoudre dans \mathbb{R} , l'équations : $3x^2 4x 4 = 0$
 - **b-** En déduire la résolution de l'équation : $\frac{3x-4}{x} = \frac{8-3x}{x^2-x}$

Exercice 4 (7 points)

Le plan est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$.

On considère les points : A(10; 0), B(0; 5) et E(2m; 5-m) avec m est un réel.

- 1) Montrer que le triangle OAB est rectangle en O.
- 2) Vérifier que, pour tout réel m, les points A, B et E sont alignés.
- 3) Déterminer le réel m pour que la droite (OE) soit perpendiculaire à la droite (AB).
- 4) Dans la suite de l'exercice, on pose E(2; 4).

On désigne par H le milieu de [AE]

- **a-** Déterminer les coordonnées du point H dans le repère $(0, \vec{i}, \vec{j})$.
- **b-** Vérifier que $(\overrightarrow{EH}, \overrightarrow{EO})$ est une base de l'ensemble des vecteurs.
- **c-** Déterminer les composantes du vecteur \overrightarrow{OA} dans cette base.
- **d-** Déterminer l'ensemble des points M, vérifiant :

$$\|\overrightarrow{MA} + \overrightarrow{ME}\| = \|\overrightarrow{MO} - \overrightarrow{ME}\|.$$